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ON BETA EXPANSIONS FOR PISOT NUMBERS 

DAVID W. BOYD 

ABSTRACT. Given a number / > 1, the beta-transformation T = To is defined 
for x C [0, 1] by Tx := 3x (mod 1). The number 3 is said to be a beta- 
number if the orbit {Tn(1)} is finite, hence eventually periodic. In this case 
,3 is the root of a monic polynomial R(x) with integer coefficients called the 
characteristic polynomial of /3. If P(x) is the minimal polynomial of /3, then 
R(x) = P(x)Q(x) for some polynomial Q(x). It is the factor Q(x) which 
concerns us here in case ,3 is a Pisot number. It is known that all Pisot 
numbers are beta-numbers, and it has often been asked whether Q(x) must be 
cyclotomic in this case, particularly if 1 <,3 < 2. We answer this question in 
the negative by an examination of the regular Pisot numbers associated with 
the smallest 8 limit points of the Pisot numbers, by an exhaustive enumeration 
of the irregular Pisot numbers in [1, 1.9324] U [1.9333, 1.96] (an infinite set), 
by a search up to degree 50 in [1.9,2], to degree 60 in [1.96,2], and to degree 
20 in [2,2.2]. We find the smallest counterexample, the counterexample of 
smallest degree, examples where Q(x) is nonreciprocal, and examples where 
Q(x) is reciprocal but noncyclotomic. We produce infinite sequences of these 
two types which converge to 2 from above, and infinite sequences of /3 with 
Q(x) nonreciprocal which converge to 2 from below and to the 6th smallest 
limit point of the Pisot numbers from both sides. We conjecture that these 
are the only limit points of such numbers in [1,2]. The Pisot numbers for 
which Q(x) is cyclotomic are related to an interesting closed set of numbers 
.F introduced by Flatto, Lagarias and Poonen in connection with the zeta 
function of T. Our examples show that the set S of Pisot numbers is not a 
subset of F. 

1. INTRODUCTION 

For each real 0 > 1 we define a mapping T = T/3 of the unit interval [0, 1] to itself 
by Tx fix (mod 1) for x E [0,1]. Parry [21] defined f to be a beta-number if the 
orbit {Tn(1)} is finite. If Tn(l) = 0 for some n, then 13 is a simple beta-number. 
If fi is a beta-number which is not simple, then there is some smallest m > 1 
(the preperiod length) and p > 1 (the period length) for which Tm+P(l) = Tm(1). 
For a simple beta-number we define m = 0 and p to be the smallest integer with 
TP(1) = 0. (This is a natural convention as will be seen below.) 

It is easy to see by induction that there are integers Ck with 0 < Ck < fi (the 
digits in the beta-expansion of 1) for which Tn(1) = fin - cfni-I - - - cn, so that 

?)1996 American Mathematical Society 

841 

Received by the editor August 4, 1994 and, in revised form, February 13, 1995. 
1991 Mathematics Subject Classification. Primary 11R06, lK16; Secondary 11Y99. 
Key words and phrases. Pisot numbers, beta-expansions, polynomials. 
This research was supported by a grant from NSERC. 



842 D. W. BOYD 

Tn (1) = P (/3), where Pn (x) = x -cixl x-* -cIn. Thus, if 3 is a beta-number, 
then 3 satisfies the polynomial equation R(3) 0 O, where 

(1.1) R(x) - { Pm+P(X) - P (X) if m > 0, 
Pp (x) if m= 0. 

The polynomial R is called the characteristic polynomial of 3. Since R(3) = 0, 3 
is an algebraic integer and hence is the root of a monic polynomial with integer co- 
efficients of smallest degree P(x), its minimal polynomial. Thus, R(x) = P(x)Q(x) 
for some monic polynomial with integer coefficients Q. We will refer to Q(x) as the 
complementary factor. 

Parry [21] showed that the roots of R other than 3 lie in the disk IzI < min(2, /). 
This was improved to IzI < (V'5 + 1)/2 by Solomyak [24] and Flatto, Lagarias and 
Poonen [17] independently. In fact, Solomyak gives an exact description of a com- 
pact subset 4) of the plane which is the closure of the set of all of the roots other 
than 3 of characteristic polynomials of beta-numbers. He shows, in fact, that 1D 
is the closure of the set of all roots other than 3 of the minimal polynomials of 
beta-numbers. 

This suggests that there will be some connection between beta-numbers and the 
sets S and T of Pisot and Salem numbers, which are defined to be those algebraic 
integers 3 > 1 all of whose other conjugates lie in the open unit disk or closed 
unit disk, respectively (with at least one conjugate on the boundary of the disk in 
the case of Salem numbers). Indeed, Schmidt [23] showed that every Pisot number 
is a beta-number. This was also proved independently by Bertrand [4, 5]. The 
idea behind the proof goes back to a paper of Gelfond [19]. Schmidt also showed 
that if the beta-expansion in base 3 of every rational is periodic, then 3 must be a 
Pisot or Salem number. However, it is not known whether all Salem numbers are 
beta-numbers, except for numbers of degree 4 [12]. 

An interesting connection between Pisot numbers and beta-expansions is a result 
of Berend and Frougny [2], which shows that normalization in base 3 (conversion 
of an arbitrary expansion in base 3 to the canonical beta-expansion) is computable 
by a finite automaton if and only if 3 is a Pisot number. Frougny and Solomyak 
[18] have studied situations in which one can guarantee that a given Pisot number 
is a simple beta-number. 

A question which naturally comes up in connection with the beta-expansions 
for Pisot numbers is the nature of the polynomials Q. We know that the roots of 
Q must all be quite small-Solomyak's result gives very precise information about 
their location. By Kronecker's famous theorem, if all roots of Q were to lie in the 
closed unit disk, then Q would be a cyclotomic polynomial (here meaning only 
that all its roots are roots of unity, not necessarily that it is irreducible). In 1987, 
I. Katai asked the author whether Q must always be cyclotomic in case 3 is a 
Pisot number with 1 < 3 < 2. Independently, in 1992 C. Frougny asked the same 
question without imposing this latter restriction. 

This question also comes up in connection with the zeta-function (,a(z) of T,B, 
studied by Flatto, Lagarias and Poonen [17]. From equations (2.7) and (2.8) of 
[17], it is easy to show that 

(1.2) (,(z) = 
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where R*(z) = zm+PR(l/z) is the reciprocal polynomial of R(z). Thus, the poles 
of the zeta-function are the reciprocals of the zeros of R with the exception of pth 
roots of unity. Note that (1.2) is valid whether or not beta is simple, giving some 
justification of the chosen definition of m and p for simple beta-numbers. A more 
fundamental reason for this choice is that, if one were to modify the definition of T 
by choosing the fractional part to be in (0, 1] rather than the usual [0, 1), then Tn(1) 
would be purely periodic with period p exactly when 3 is a simple beta-number. 

The authors of [17] defined M(p) < 1 to be the absolute value of the second 
smallest pole of the zeta-function (M(p) = 1 if there is no pole other than 1/3 in 
the unit disk), and showed that M(p) is a continuous function of 3. Hence, the set 
F = {3f M( 3) = 1} is a closed subset of the reals. (We should remark that M(p) 
here has no relation with the Mahler measure of /). The only beta-numbers which 
can be in F must be Pisot or Salem numbers. They remark [17, p. 241] that they 
do not know of any Pisot number that is not in F. Since the Pisot numbers which 
lie in F are exactly those for which Q(x) is cyclotomic, our results provide many 
examples of such Pisot numbers. 

In answer to Katai's question, we searched the list of Pisot numbers in [1,1.932] 
compiled in connection with [7] and, after trying about 50 examples, found an 
example of a Pisot number 3 = 1.85855 ... of degree 23 with (m, p) = (51, 22) for 
which Q(x) is nonreciprocal, hence noncyclotomic. (In this paper, a polynomial 
Q(x) of degree d is reciprocal if xdQ(1/X) = IQ(x) and nonreciprocal otherwise). 
Later, after Frougny had raised the same question, we again looked at this table, 
finding two more examples, one of degree 26 with (m, p) = (327,30) and one of 
degree 36 with (m,p) = (1923,80), both with Q(x) nonreciprocal (and both with 

= 1.8667... to four decimal places). 
These discoveries raised some natural questions: Are there examples for which 

P(x) has smaller degree or for which Q(x) has smaller degree? Is it possible for 
Q(x) to be a reciprocal polynomial but not cyclotomic? How common is it for Q(x) 
to be noncyclotomic? How are the 3 for which Q(x) is noncyclotomic distributed 
in the interval [1,2]? 

This paper describes a systematic study of these questions which exploits the 
known structure of the Pisot numbers, in particular Amara's [1] identification of the 
limit points of the set S n [1, 2] and the algorithm developed in [7, 10 and 11]. We 
are able to obtain satisfactory answers to most of these questions. In particular, we 
find the smallest 3 for which Q(x) is nonreciprocal (equation (4.1)) and the smallest 
3 for which Q(x) is reciprocal but noncyclotomic (equation (4.2)); this example has 

a factor L(-x) where L(x) is Lehmer's famous 10th-degree polynomial. 
We find a 3 < 2 of degree 7 with P(x) = x7 -2x5-2x4-x-1 for which Q(x) 

is a nonreciprocal polynomial of degree 13 (given in equation (3.5)). By completely 
enumerating the 71 P(x) of degree at most 7, we find that all 3 of degree < 6 have 
cyclotomic Q, and the example mentioned in the previous sentence is the unique 
example of degree 7 for which Q is noncyclotomic. The examples of Proposition 
5.5 generalize this example. 

As far as the degree of Q itself is concerned, for / < 2 the noncyclotomic Q 
of smallest degree which was found is Q(x) = x6 + x5 - - X2 + 1 (equation 
(4.4)), which occurs for a P(x) of degree 15. This is probably the smallest degree 
attainable for noncyclotomic Q with /3 < 2, but of this we cannot be certain since 
it is conceivable that a smaller degree Q(x) might occur for some unexamined P(x) 
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of large degree. On the other hand, for 0 > 2, we can definitely find noncyclotomic 
complementary factors of smaller degree: in [2,2.2] we find many examples for 
which Q(x) = x3-x2 + 1. 

It was shown by Talmoudi [25, 26] that, for any 6 > 0, the elements of Sn[l, 2-8] 
fall into a countable number of families of regular Pisot numbers connected with 
the known limit points of S n [1, 2], and a finite set of irregular Pisot numbers. We 
showed in [10] how the finite set could be effectively enumerated. In the current 
study, for 34 of the 36 families of regular Pisot numbers associated with the smallest 
8 limit points we have found that the polynomials Q(x) are cyclotomic. For the two 
exceptional families, both associated with the limit point O' = 1.90516..., a zero 
of x4 X3- 2X2 + 1, one quarter of the Q(x) are nonreciprocal. We conjecture that 
Q(x) will be cyclotomic for all the remaining regular Pisot numbers in [1, 2]. This 
would imply that the only possible accumulation points in [1,2] of 3 with Q(x) 
noncyclotomic would be O' and 2. 

For the irregular Pisot numbers in [1, 1.9324] U [1.9333,1.96] there were a rea- 
sonable number of noncyclotomic Q(x), roughly 5% of the total studied. For the 
interval [1.96,2], we did not attempt a complete enumeration (there are infinitely 
many limit points of S in this interval) but restricted the degree of 3 to be at most 
60; for the interval [2, 2.2], we restricted the degree to be at most 20. For the Pisot 
numbers in [2,2.2], of degree at most 20, the percentage of noncyclotomic Q(x) is 
over 50%, although the number of these which are reciprocal is a small fraction of 
the total. 

Our computations produced only 38 examples of 3 < 2 for which Q(x) is recip- 
rocal but noncyclotomic. For 3 of this type, the largest degree for P(x) is 36 in 
spite of a search up to degree 60. This perhaps suggests that there are only a finite 
number of examples of this type with 3 < 2. On the other hand, Proposition 5.2, 
described next, shows that there are infinitely many such examples in any interval 
[2,2+6] with > 0. 

Finally, suggested by the computations described in ??3 and 4, we produce six 
interesting sequences of Pisot numbers /k -* 2. In each of these, /k is the root of 
a polynomial of the form f (x, xk), where f (x, y) is a polynomial in two variables. 
Five of these examples are described in Propositions 5.1 to 5.5. The examples of 
Propositions 5.1 and 5.2 have /k > 2. For the first of these (Proposition 5.1), the 
complementary factors are the simple nonreciprocal trinomials xk+1 -xk+1. For the 
second (Proposition 5.2) the complementary factors are the reciprocal polynomials 
x2k+2 - x2k+1 + xk+l - x + 1, which are noncyclotomic for sufficiently large k. 

The sequences of Propositions 5.3 to 5.5 have /k < 2, and the complementary 
factor is nonreciprocal in each case. These examples are considerably more com- 
plicated than those of Propositions 5.1 and 5.2. The simplest Q(x) found here is 
x4k + xk -1 for the even terms with k > 4 of the sequence of Proposition 5.4. We 
have not found a similar sequence with /k 1 2 for which the complementary factor 
is reciprocal but noncyclotomic. As mentioned above, the computations described 
here suggest that the set of Pisot numbers in [1, 2] with this property may be finite. 

In the examples described in Propositions 5.1 to 5.5, the preperiod length m and 
period length p increase linearly with k and the expansions follow a recognizable 
pattern which can be proved to hold for all k > k0, where k0 is given explicitly. 
On the other hand, for the sixth example, which is presented in Remark 5.4 and 
Table 2, although /k < 2 satisfies a polynomial of the same general form as those 
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in Propositions 5.3 to 5.5, the values of m and p appear to grow much more rapidly 
with k and no clear pattern is evident. This indicates that there is no obvious 
generalization of Propositions 5.1 to 5.5 to families of the form f(x, xk), even when 
it can be proved that these polynomials define Pisot numbers for sufficiently large 
k. 

2. THE BASIC STRUCTURE OF S n [1,2] 

Recall that a real number /3 > 1 is a Pisot number (or Pisot-Vijayaraghavan 
number) if it is an algebraic integer all of whose conjugates other than / lie in the 
open unit disk {z: IzI < 1}. A famous result of Salem [22] is that the set of such 
numbers is a closed subset of the real line. The limit points of S were characterized 
by Dufresnoy and Pisot [16] as follows: let C(x) be the minimal polynomial of /; 
then / is a limit point of S if and only if there is a nonzero polynomial A(x) with 
integer coefficients and A(O) -& 0 such that IA(x)I < IC(x)I on the unit circle IxI = 1, 
with equality being attained only at a finite set of points. There will generally be 
more than one choice for A(x) for a given C(x). 

Let us call the minimal polynomial of a Pisot number a Pisot polynomial. Asso- 
ciated with every limit point /3 are two sequences of polynomials 

Pn (x) = xThC(x) ? A(x). 

For all sufficiently large n, Pn (x) has a unique root outside the unit circle and hence 
is the product of a Pisot polynomial and a cyclotomic polynomial. (For smaller n, 
Pn(X) is cyclotomic). The cyclotomic factor must be a factor of the fixed Laurent 
polynomial C(x)C(1/x) - A(x)A(l/x). We call the roots of the Pn(x) the regular 
Pisot numbers determined by /. 

Amara [1] determined the complete set of limit points of S in [1, 2[ together 
with the associated polynomials A(x). These fall into two infinite sequences {qr} 
and {fr}, and one exceptional number O'. These have minimal polynomials, C(x), 
given by 

xr(x-2) + (x-1) for Or, 

(r1 (x -2) + 1)/(x-1) = xr+-xr-xr-1_ _x 1 for 'r, 

and 
x4 -x3-2x2 + 1 for OJ. 

The corresponding A(x) are as follows: 

xr -xr-I +1, xr_x+1 and (xr + 1)(x-1) for Or, 

xr+l _ 1 and (xr + 1)/(x + 1) for l/'r 

and 
x3 +x2 _X - 1 and x4 _X2 + 1 for O9. 

These numbers are ordered as follows: 
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Numerical values for the numbers in (2.1) to 3 decimal places are 

1.618 < 1.755 < 1.839 < 1.867 < 1.905 < 1.928 < 1.933 < 1.966. 

The regular Pisot numbers associated with these limit points thus give an infinite 
number of infinite sequences of known Pisot numbers in [1,2]. Talmoudi [25, 26] 
showed that, for any 6 > 0, apart from these regular Pisot numbers, there are 
only a finite number of Pisot numbers in [1, 2 - 8]; we call these numbers irregular 
Pisot numbers. This result was made effective in [10], which gives an algorithm 
for determining the irregular Pisot numbers in an interval containing a limit point. 
The main difficulties occur for z4 for r > 3. These have width exceeding (V's + 1)/2 
while all of the other limit points have width 1 and were treated in the earlier paper 
[7]. The width w(,3) of a limit point ,3, which is defined in [7], gives a measure 
of the complexity of the tree which one must search to find all Pisot numbers 
in the neighborhood of ,3. There is a quantitative change in the complexity of 
the algorithm when w(3) > (V's + 1)/2, a case which is explored more fully in 
[10]. The paper [11] gives the details of the algorithm of [10] for the limit point 
3= 1.86676.... (In those papers, zr and Pr were denoted ar and ,r a notation 

we have temporarily abandoned because of the possibility of confusion with the 
many occurrences of ,3 in this paper). 

3. THE BETA-EXPANSION FOR REGULAR PISOT NUMBERS 

The canonical beta-expansion of 1 to base ,3 > 1 is defined by the "greedy" 
algorithm: ao = 1, cn = L3Cinla and an = 3aCn- - cn for n > 1. Then an 
Tn(1), and 

00 

(3.1) 1= :Cn 
n 

n=1 

where 0 < cn < ,3 for all n. The sum (3.1) is the beta-expansion of 1 to base 
3. We will often refer to the sequence {cn} as the beta-expansion for ,B. If this 

expansion is periodic, with preperiod length m and period length p, we denote it 
by cl...cp, if m = 0, and by cl...cm: cm+...cm+p if m > 0. For 3 < 2, we 
can regard the expansion as a finite or infinite word in the alphabet {0, 1 } and will 
use the notation of formal languages for these words where convenient. The word 
cl ... cm is called the preperiod and cm+1. ... cm+p the period of the expansion. The 
exact conditions on {cn} for it to be the beta-expansion of 1 for some 3 > 1 were 
determined by Parry [21, p. 407]: the sequence c1,c2, ... must dominate, in the 
sense of lexicographic order, the shifted sequences Ck, Ck+l, . . -,for all k > 1. 

In computing the beta-expansion for an algebraic integer /3 of degree d, the 
successive iterates an = T n(1) lie in the ring 2[3] and hence can be represented 
exactly as d-vectors of integers, so the computation of an from acn-I and cn uses only 
integer arithmetic. The only part of the algorithm that is best done in noninteger 
arithmetic is the computation of cn = I 3an1 ii. This must occasionally be done to 
fairly high accuracy if an is very small. The use of 50-digit precision for this step 
sufficed for all expansions described here. Even this step can be done with integer 
arithmetic by the use of resultants, but the extra time required does not make such 
an approach competitive with the use of floating-point arithmetic. 
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All the computations described in this paper were done using the Maple com- 
puter algebra system [14]. The algorithm described in [7] was recoded using the 
arbitrary precision integer routines of Maple. The test for cyclotomic Q(x) used 
the rootsquaring method described in [8] (and apparently rediscovered in [13]). 

We begin by studying the beta-expansions for the regular Pisot numbers associ- 
ated with the eight limit points listed in (2.1). There are either four or six families 
associated with each limit point, corresponding to the two or three choices for A(x) 
and the two choices of sign in x C(x) ?A(x). In any given case, it is easy to observe 
the pattern in the expansions as a function of n and to predict the expansion for 
general n. The three-step method of [12] can then be applied to prove the general 
result (see part (2) of the proofs of Propositions 5.1 and 5.2 below). We illustrate 
this below with some arbitrarily chosen examples. The conclusion from this is that 
for the regular Pisot numbers associated with the limit points q5r and Vr for r < 4, 
the factor Q(x) is cyclotomic. We conjecture that this is the case for all r. 

However, for the special limit point O2, with C(x) = X4-x3-2X2 + ?1 if 
A(x) -X4- _ ? 1, then xnC(x) + A(x) has Q(x) nonreciprocal if n > 4 is even, 
and xnC(x) - A(x) has Q(x) nonreciprocal if n > 7 is odd, and also for n = 2 
and 3 (in these latter two cases, the corresponding root satisfies 3 > 2). For 
B(x) = x3 + x2 - x - 1, xnC(x) ? B(x) has Q(x) cyclotomic except in two cases: 
xnC(x) - B(x) with n = 2 or 3 has Q(x) nonreciprocal (again with 0 > 2). More 
details of the expansions are given below. 

We should first point out that the beta-expansions for the limit points O$r, )r 
and O2 are not complicated. The number qr is a simple beta-number with p = 2r, 
expansion lrOr-1l and with complementary factor Q(x) = (Xr - 1)/(x - 1). The 
number 'Or is a simple beta-number with p r + 1, expansion 1r+1 and Q(x) = 1. 
Only O' is not a simple beta-number; it has (m,p) = (2,2), with expansion 11: 01 = 

11(01)W and Q(x) = 1. 
For example, consider the regular Pisot numbers on associated with P2 which 

satisfy Pn(/3n) = 0, where Pn(x) =X(X3 - x2 - x - 1) + (X3 - 1). If n is even, 
Pn (x) is the minimal polynomial of /3n while if n is odd the minimal polynomial is 
Pn (x)/(x +1). We find that 13n is a simple beta-number with beta-expansion given, 
for n > 2, by 

(110)k01103k1 if n =3k + 1, 

(3.2) (110)k10103k+l1 if n =3k + 2, 

(110)k+103k+21 if nr=3k+3. 

Note that the expansions in (3.2) converge to (110)W as n -> oo. This is a legitimate 
expansion for 42 but not the canonical expansion. The corresponding Q(x) in these 
three cases is Qn(x) = x3k + x3k-3 +* * + x3 + 1 if n is even or Qn(x)(x + 1) if n is 
odd. As in [12], all that is needed here is to verify from Parry's [21] criterion that 
the expansions cl ... cm given in (3.2) are the beta-expansions of 1 for some / > 1 
and then to verify that Pn(X)Qn(X) = X cxnm-l - cm = Rn(x). This is 
an elementary calculation. The case n = 1 follows a different pattern but gives a 
simple beta-number with cyclotomic Q. 

The numbers in the previous paragraph are to the left of 'b2. Taking the other 
sign, we obtain /n > /'02 satisfying Pn(x) = Xn(3- x2 - x - 1) - (X3 - 1). Here, 
P(x) = Pn(x) if n is odd, and Pn(x)/(x + 1) if n is even. For n > 3, the expansion 



848 D. W. BOYD 

of /% is periodic with (m, p) = (3, n) and is given explicitly by 111: On-3110. Here 
the expansions converge to 111, the canonical expansion of '$2, as n -> oc. The 
complementary factor is 1 if n is odd and is x + 1 if n is even. The two cases n = 1 
and 2 have /3n > 2 and periodic expansions 2: 101 and 2: 001, respectively, both 
with Q(x) = 1. 

For the expansions for regular Pisot numbers associated with ?3r-1 satisfying 
Pn(X) = Xn(Xr -Xrl - I 

- -1) + (Xr -1), it seems that Q is the product of 
xrk +xr(k1-) +. +?Xr + 1 times the cyclotomic factor of Pn, for sufficiently large n, 
but this has only been verified for r < 4. Taking the same definition but with the 
? sign chosen to be -, one finds that the expansion is periodic with (m, p) = (r, n), 
or explicitly 1r: On-0lr-10, and that Q is the cyclotomic factor of Pn. Again, this 
has been verified only for r < 4. 

The expansions for regular Pisot numbers corresponding to the limit points qr 
tend to follow more complicated patterns than for those associated to the 'Vr, pre- 
sumably because the beta-expansion of O3r is somewhat more complicated than that 
of 'Or. For example, associated with 03, we have /3n with minimal polynomial 

P(x) =(x(x4 - 2x3 + x - 1) + (x3 - x + 1))/Gn(X), 

where Gn (x) is the cyclotomic factor of the numerator. We find that 13n is a simple 
beta-number for all n with p depending on n mod 6 in the following way: 

2n+3 ifn_Omod6, 

n if n--lmod6, 

3 4n-1 if n_2mod6, 
( 2n if n_3mod6, 

2nm-1 if n--4mod 6, 

2n-2 if n-5 mod 6. 

For example, the explicit expansion for n = 6k + 2 is 1303 (I0)3k+I0 1 (1)3k 2 13031. 
Note the convergence to the noncanonical expansion 1303(1o)w for q3. The factor 
Q in this case is a cyclotomic polynomial of degree 3n - 4. 

The sort of periodic behavior exhibited in (3.3) was found for all of the 36 families 
of regular Pisot numbers we considered. For q$r the modulus is a factor of 2r and 
for 4'r the modulus is a factor of r + 1, at least for r < 4. Note that these are the 
length of the beta-expansions for q$r and ?/r. Although these regularities have as 
yet no satisfactory explanation, they lend credibility to the conjectures concerning 
qr and /r for r > 4. 

As mentioned earlier, the only noncyclotomic Q found among the regular Pisot 
numbers in [1, 2] correspond to the exceptional limit point O2 = 1.90516..., which 
has minimal polynomial C(x) = X4 - x3 - 2X2 + 1. Let A(x) = X4 - x2 + 1 and 
B(x) = X3 + x2 - x - 1. Notice that C(x)C(l/x) = A(x)A(1/x) + B(x)B(1/x), 
so that, for example, the cyclotomic factor of Pn(x) xnTC(x) ? A(x) is Gn(x) = 

gcd(Pn(x), B). 
Consider first xnC(x) + A(x). For odd n, Q(x) is cyclotomic. More precisely, 

if n = 1, ol = 1.32471 ... is the smallest Pisot number with minimal polynomial 
X3- x -1; it is simple with p = 5, expansion 10001, and Q(x) = x2-X + 1. if 
n > 3 is odd, then 3n is a simple beta-number with p = n + 2 and Q(x) = 1. 
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Continuing with xTC(x) + A(x), if n is even, we find that Q(x) is cyclotomic 
for n = 2 and noncyclotomic for n > 4. For n = 4, 4 = 1.80421 ... has minimal 
polynomial 

(3.4) P(x) = x7 - 2x5 - 2x4 - x - 1 

and we find that (i, p) = (6,14) and that Q(x) is a nonreciprocal polynomial of 
degree 13, namely 

(3.5) Q(x) 13 -x12 + 11-x 9 +2x 8 -2X7 + 2x 6 x5 + x3 x2x- 

We will see in the next section that this /34 is the unique Pisot number in [1, 2] 
of degree at most 7 for which Q(x) is noncyclotomic. If n > 6 is even, then 
Pn(X) = XnC(X) + A(x) has (m,p) = (n + 2,2n + 4) and Q is a nonreciprocal 
polynomial of degree 2n + 3. 

The polynomial Q(x) of (3.5) occurs again in Proposition 5.5, where we show 
that Q(xk) occurs as a complementary factor for any k > 1 for a certain /k of 
degree 6k + 1. 

For Xn C(X)-A(x), Q(x) is nonreciprocal when n = 2 and 3, both with , > 2, and 
when n is odd and n > 7; otherwise, Q(x) is cyclotomic. In detail, f1 = 2.58808.... 
has P(x) = x5 - 2x4 - 2x3 + x2 + x - 1, (m, p) = (3,2) and Q = 1. For n = 2, 

2 = 2.19659... has 
(3.6) P(x) = x5- 2x4 - x3 + x2 + x - 1, 

(m,Ip) = (3,5) and 

(3.7) Q(x) = x3+ x + 1 

nonreciprocal; the explicit beta-expansion here is 200:20001. This is the simplest 
example of a noncyclotomic Q found among the regular Pisot numbers, but note 
that it occurs for / > 2. Similarly, /3 = 2.05295... has 

P(x) = X7 - 6 - 2x5 - x4 + x3 + x2 - 1 

(im, p) = (4,12) and the nonreciprocal 

Q(x) =x9 - x8 + x7 + x4 + x2 + 1 = (x + 1)(x2 + 1)(x2 -x + 1)(x4 - x3 + 1). 

For n > 4, XnC(X) - A(x) has /3n < 2 and if n is even, then o3n is a simple 
beta-number with p = 12 for n = 4 and p = 2n for n > 6; the corresponding Q is 
the cyclotomic polynomial (Xn-2 - 1)/(x - 1). 

For n odd, /5 is also a simple beta-number with a cyclotomic Q, but for n > 7, 
(m,Ip) = (2n, n) with a nonreciprocal Q(x) = (x2n-2 -xn--xn-3 + 1)(x2 - 1). 
For these n, the beta-expansion for /3n is 

111(01)(n-5)/210100(01)(n-)/20011:1 lo-10. 

For XnC(X) + EB(x), e = ?1, Q(x) is cyclotomic except in two cases, both with 
e = - 1 and having / > 2, namely /2 = 2.10213..., which has (m, p) = (11,2) 
and Q(x) = X7- x6 + x4 - x + 1, nonreciprocal, and /3 = 2.01043... with a 
nonreciprocal Q of degree 30 which has a cyclotomic factor (x13 - 1)/(x - 1). 

So, the regular Pisot numbers associated with O' already provide answers to the 
questions posed by Katai and Frougny. The examples (3.4) and (3.6) are reasonably 
simple, although one might hope for an example with / < 2 for which Q(x) has 
smaller degree. The regular Pisot numbers in [1,2] also apparently provide no 
examples in which Q(x) is a noncyclotomic reciprocal polynomial. For these, at 
least for 1 < / < 2, it seems that we must look at the irregular Pisot numbers. 
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4. THE BETA-EXPANSIONS FOR IRREGULAR PISOT NUMBERS 

For any 6 > 0, the set of irregular Pisot numbers in [1,2 - 6] is finite. It can 
be enumerated by using the algorithms of [7] and [10]. The computation in the 
neighborhood of the limit points r, for r > 3, requires some preliminary analysis 
which has only been completely carried out in the case of 083 = 1.86676 ... [11], so 
here we carried out a complete enumeration only for the intervals [1,1.9324] and 
[1.9333,1.96]. 

We will find it convenient to use the abbreviations C for "cyclotomic", NR for 
"nonreciprocal" and NC for "reciprocal but noncyclotomic". In addition, we will 
say that / is of type C, NR or NC according to whether the complementary factor 
Q is C, NR or NC. 

The algorithm of [7] is also easily adapted to enumerate all elements of S n [a, b] 
of degree at most d, where [a, b] is any finite interval. This set is clearly finite since 
it is a set of algebraic integers of bounded degree with all conjugates bounded, 
so it is obvious that it can be enumerated by the naive approach of bounding 
the coefficients of the polynomials involved, using elementary symmetric functions. 
However, the method of [7], which uses Schur's algorithm in the manner pioneered 
by Dufresnoy and Pisot [15], searches through a much smaller set. We used this to 
enumerate S n [1.9, 2] up to degree 50, S n [1.96,2] up to degree 60, and S n [2,2.2] 
up to degree 20. 

4.1. The interval [1,2]. For example, enumerating S n [1, 1.76] (which includes 
the two smallest limit points), we find only points of type C. But, in S n [1.76,1.78] 
there are 3 examples of type NR and 1 of type NC. We thus have the smallest Pisot 
number of type NR: =- 1.76478..., of degree 16, with minimal polynomial 

(4.1) P = [1,0, -1, -1, -2, -3, -2, -2, -2,0,1,1,2,2,1,1,1] = x16 - x14 - .... 

for which (m,p) = (113,51). (We will use the notation [ao,ail,... ,ad] for the 
polynomial aoxd + * + ad, whenever convenient). We omit the beta-expansion and 
Q for reasons of space (Q is a nonsparse polynomial of degree 148). 

The second-smallest : of type NR is /3- 1.76489..., of degree 11, with minimal 
polynomial 

[1,0, -2, -2,-1, 0,2,2,1,0, -1, -1], 

which has (m,p) = (30,5) and Q(x) = (x2-x + 1)(x22 + x15 +x x8X7-1). 
The smallest : of type NC is d = 1.76789 ..., of degree 12, with minimal poly- 

nomial 

(4.2) P = [1, 0, -1, -2, -2, -1, -1, -1, -1,0, 1, 1,1]. 

It has (m,p) = (4,34) and 

Q(x) = F4(x)F6(x)F12(x)F3o(x)L(-x), 

where Fq(x) is the minimal polynomial of the qth roots of unity and 

L(x) = x10 + X9 -x6 - x5-x4 -x3 + x + 1 
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is the minimal polynomial of Lehmer's number, the smallest known Salem number. 
The polynomial L(x) occurs elsewhere: e.g. there is a simple beta-number: = 

1.93723 ..., of degree 16, with minimal polynomial 

P = [1, -2,1,1-1, -1, 0, -1, ,-1, 0, -1, 0,0, -1,0,0,o -1] 

for which Q(x) = (x2 + x + 1)L(-x2). 
The next interval considered, [1.78,1.8], also contained 3 numbers of type NR 

and one of type NC. The latter is ,3 = 1.79002... with minimal polynomial of 
degree 15, 

(4.3) P = [1,0, -1, -2, -2,-2, -1, -1,0, 1,1, 1, 1, 1, 1, 1], 

which has (m, p) = (26,7) and a noncyclotomic irreducible Q of degree 18, namely 

Q = [11,-1,01 ,il-1,1 ,-1,01 , 1-1,1 ,0,-1,1 ,-1,1 10l-1,1 il 

having largest root of absolute value 1.12661.... In [1,2] we found only one other 
/3 of type NC with deg(Q) = 18 and none with deg(Q) smaller than 18. 

One of the other Pisot numbers in this interval for which Q is fairly simple is 
d3 = 1.79130... with P(x) of degree 18 given by 

P = [1, -2,1, -1, 0,0, -)1,1, -1,01,o -1,1, -1, 0,0, -)1,1, -1]. 

This has (m,p) = (16,15) and Q(x) = (x + 1)(X12 + X3 - 1). This example is 
generalized in Proposition 5.4. 

The simplest nonreciprocal polynomials are trinomials. Proposition 5.4 shows 
that Q(x) = x4k + xki1 occurs for 3 < 2 for every even k > 4, giving for example 
Q(x) = x16 +X4 -1. Among the "sporadic" examples, we find Q(x) = x16 +X5 -1, 
which occurs for ,3 = 1.95114 ..., of degree 23, with 

P = [1, -1, -1, -1, -1,0,l-1,0,l-1,01,10, 1,0,1,1,0,0,-1,0,0,0,0,l-1]. 

with (m,p) = (31,8). 
Enumerating the subset of S n [1,2] of degree at most 7, we find that there 

are 71 such numbers, only one of which is not of type C. This is /3 = 1.80421..., 
with the minimal polynomial P(x) given in (3.4) , (m,p) = (6,14) and Q(x) the 
nonreciprocal polynomial of degree 13 given in (3.5). We have already identified 
this / as a regular Pisot number associated with O'. Thus, the smallest degree of 
P(x) with /3 < 2 for which Q(x) is noncyclotomic is 7 and the P(x) of (3.4) is the 
unique example of this degree. 

Considering next the possible degrees of the complementary factor Q(x) for 
/3 < 2, we find that the noncyclotomic complementary factor Q of smallest degree 
for/3 < 2 is 

(4.4) Q(x) =x6 +x5 -x3-x2+1 

which occurs for a 3 = 1.85896. . ., of degree 15, with 

P=[ 21, -0, 10 1000001 -1] 
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and (m,p) = (14,7). The expansion here is 11100010100001:0100010. Since a 
lower-degree noncyclotomic complementary factor might be associated with a P(x) 
of larger degree than we have considered, we cannot claim that this is the smallest 
degree of such Q(x) possible for ,B < 2, only that it is the smallest degree we were 
able to find. 

Clearly related to the ,B of the previous paragraph is ,B = 1.85930..., of degree 
18, with 

[I [1-2,1,-1, -1,1,1-1, 0,1,1-1,1,0, -1,1,1-1,0,1,1-1,1],l 

which has (m, p) = (21,7), Q(x) = (x6 + x5 - X-X2 + 1)(X4 + 1) and expansion 
111000101000110100001: 0100010. Note that the periodic part of the expansions are 
identical and the preperiod of the second differs from the first only by the insertion 
of the sequence 0001101. 

A pattern of coefficients which seems to occur regularly in the minimal polyno- 
mials for /3 of type NC is exemplified by the following few examples: 

P=- [1,0,l-1,-2, -3, -4, -4, -4, -3, -2, -1,0, 0,1,1,1,1,1,~1,1,~1,1,1,1,1],l 

of degree 24, with /3 = 1.95656..., (m,p) = (16,235) and deg(Q) = 227, 

P = [1,0, - 1,-2, -3, -4, -4, -4, -3,-2,- 1, - 1,0, ) 1,1,1,1,1,1,1,1,1,1,1 , l 

of degree 23, with p = 1.95679, (m,p) = (15,69) and deg(Q) = 61, and 

P = [1, 0, -1, -2, -3, -4, -3, -3, -2, -1, 0, 0,1,1,1,1, 11], 

of degree 16, with / = 1.93680..., (m,p) = (8,61) and deg(Q) = 53. See also (4.2) 
and (4.3). There are also many having similar patterns which are NR rather than 
NC, e.g. (4.1). 

The results of an enumeration of S n [1.9, 2] up to degree 50 are summarized in 
Table 1, where we classify the /3 E S n [a, b] of degree at most d according to their 
type (C, NR or NC). Among these numbers, there is a /3 of type C, of degree 50 
with deg(Q) = 624, one of type NR, of degree 50 with deg(Q) = 3708, and one of 
type NC of degree 28 with deg(Q) = 992. 

Table 1 also contains a summary of an enumeration of S n [1.96,2] up to degree 
60. Among these is a / of type NR of degree 53 with deg(Q) = 13551. It is 
interesting to observe that the largest value of deg(P) found for / < 2 of type NC 
is 36. That is, there are no numbers with / < 2 of type NC with degrees between 
37 and 60. This suggests that perhaps the set of Pisot numbers of type NC in [1,2] 
is finite. Note that Proposition 5.2 of the next section shows that the set of Pisot 
numbers of type NC in [2,2 + 6] is infinite for any 6 > 0. 

TABLE 1 
interval d total C NR NC 
[1,1.9] 50 1234 1173 54 7 
[1.9,2] 50 7012 6820 161 31 

[1.96,2] 60 8437 8344 77 16 
[2,2.1] 20 3002 1429 1310 263 

[2.1,2.2] 20 7008 2933 3884 191 
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For type C, the largest value of deg(Q) observed in this enumeration is 896, 
attained for a 3 of degree 60. Indeed, an examination of the data suggests a 
sequence of regular Pisot numbers of type C of degree 2k + 3 for which deg(Q) k2. 
Specifically, let 

Pk(X) =xk+2(xk(x-2) + x 1)- (xk -x +1). 

Then Pk (x) is the minimal polynomial of a regular Pisot number 3k associated with 
the limit point qk. This is a "diagonal" sequence for which /k -> 2 as k -*> x. 
We can prove, by a technique analogous to the proofs of Propositions 5.1 and 5.2 
below, that /k is a simple beta-number with p = Pk, where Pk = k2 + 0(k). More 
precisely, if Qk denotes the complementary factor, then deg(Qk) = Pk- (2k + 3) is 
given by 

deg(Qk) = k(k - 1) + (?3 + 1 (-I)k+l)(k - 1) + (_l)k+l - 1. 

Thus, deg(Qk) -=(deg(Pk))2, which seems to be the maximal rate of growth of 
deg(Q) relative to deg(P) for numbers of type C in [1, 2]. 

We will show in the next section that there are infinitely many numbers of type 
NR in [1,2] in addition to the two families of regular Pisot numbers which accumu- 
late at O'. These examples accumulate at 2, which is consistent with Talmoudi's 
theorem about regular Pisot numbers and our conjecture that the regular Pisot 
numbers corresponding to the limit points q3r and Ir are all of type C. The three 
sequences of irregular Pisot numbers described in Propositions 5.3-5.5 were found 
by examining the numbers of type NR in S n [1.96,2] for which deg(Q) is relatively 
small. 

4.2. The interval [2,2.2]. Once one begins to consider ,B > 2, it appears that 
noncyclotomic Q are quite common. Some data to illustrate this are found in Table 
1. For / < 2, notice that less than 5% of the Q are noncyclotomic (NR or NC), 
but for 3 > 2, more than 55% are noncyclotomic. So, for , > 2, we will tend to be 
impressed only by such Q of very large or very small degree. On the other hand, 
beta of type NC are still not very common when 3 > 2. 

Recall that the smallest degree of noncyclotomic Q found for , < 2 was 6, and 
that, for / > 2, we have already found one of degree 3, namely Q(x) = x3 + X + 1 

for the P(x) of (3.6) associated with O'. In our search up to degree 20 of [2,2.2], 
we did not find this complementary polynomial again, but found 30 occurrences of 
Q(x) = x3- x2 + 1. The simplest occurred for the /3 = 2.09430 ... of degree 5 with 
P = [1, -1, -1, -2, -1, -1], a simple beta-number with expansion 20001111. This 
P is the case k = 1 of the polynomials considered in Proposition 5.1. 

Interestingly, 26 of the 30 numbers with Q = x3 -x2 + 1 occur in a small 
neighborhood of 2.094 ... and are clearly related to this last example. For example, 
there is a degree-15 , = 2.09485... with 

P = [1, -1, -1,-2, -1, -1, 0, 0, 0,0,-1,0,0,1,1,1],I 

having (m,p) = (8,10) and expansion 20001111: 0010001100, and a degree-13 / = 
2.09669... with 

P = [1 -1 -1 -2 1 -11 -I n1 0 1 n1 n10 11 
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having (m,p) = (8, 8) and expansion 20001111: 10001100, both with Q = X3-X2+1. 

The numbers just described are all of type NR. For type NC, recall that the 
smallest value of deg(Q) found for [1,2] was 18. For [2,2.2], the smallest value of 
deg(Q) found for type NC was 10. One of these is the case k = 4 of Proposition 
5.2. 

In the other direction, there are 16 numbers in [2,2.1] for which deg(Q) > 1000, 
all of type NR, the largest value of deg(Q) being 5876. In this interval there are 27 
of type NC with deg(Q) > 100, the largest value of deg(Q) being 319. There are 
none of type C with deg(Q) > 100. 

In the interval [2.1,2.2], there are 164 , for which deg(Q) > 1000, all of type 
NR, the largest value of deg(Q) being 8661. There are just 4 of type NC with 
deg(Q) > 100 and only two of type C with deg(Q) > 100. 

It is interesting to note that the ratio of #(NC) to #(NR) is much larger in 
[2,2.1] than in [2.1,2.2]. The reason for this is unknown. 

5. SOME INFINITE FAMILIES OF PISOT NUMBERS 

Extrapolating from patterns observed in the data described above, we find the 
following interesting families of Pisot numbers. The first two have 1Bk > 2 and the 
next three have 1Bk < 2. In all cases, it is easy to see that 1Bk -* 2 as k -x oc. 

Proposition 5.1. For each k > 1, let 

Pk = X2k+1(X - 2) - xk(x - 1) + 1. 

Then Pk (x)/ (x -1) is the minimal polynomial of a Pisot number 3k > 2 with simple 
beta-expansion 20k+112k having p = 3k + 2 and 

Qk =xk+1- xk +1 

Proposition 5.2. For each k > 2, let 

Pk =X2k(X -2) - xk-l(x -1) + 1, 

and 
Qk= X2k+2 x2k+1 + xk+1 _ X +1 

which is reciprocal but noncyclotomic for sufficiently large k. Then Pk (x)/ (x -1) or 
Pk(X)/(X2 - 1), depending on whether k is even or odd, is the minimal polynomial 
of a Pisot number 3k > 2 with beta-expansion 20k:Olk-lOlk-2011Ok-21 having 
(m,lp) = (k + 1, 3k + 1) and complementary factor Qk(x) or Qk(x)(x + 1), for k 
even or odd, respectively. 

Proposition 5.3. For each k > 4, let 

Pk = X5k+1 (X - 2) + x4k(x - 1)-x3k+1l(X-1) 

-x2k(X _ + Xk+l _x1) + (x 

Then Pk = SkTk, where Sk (x) is the minimal polynomial of a Pisot number 13k < 2 
and Tk(x) is cyclotomic, being either 1 if k # 3 mod 10, or X4- x3 + X2 - X + 1 
if k _ 3 mod 10. The beta-expansion of 3k has (m,p) = (6k + 2,3k + 1) and 
complementary factor Qk(x)Tk(x)/(x - 1), where 

Qk = x4k+2 _ x3k+1 + x2k-X+1 2 ?+1. 
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Proposition 5.4. For each k > 3, let 

Pk = x6k+1(x -2) + x5k(x2 - x + 1)-x4k+1(x-1) 

-x3k(x2-2x ? 1)-x2k x(x2-x ? 1)-x ? 1, 

and let 
Q=4k k-1 Qk =X4 + X-. 

Then Pk(x)/(x - 1) or Pk(x)/(x2 - 1), depending on whether k is even or odd, is 
the minimal polynomial of a Pisot number /k < 2 with (m,p) = (5k + 1, 5k) and 
complementary factor Qk(x) or (x + 1)Qk(x), for k even or odd, respectively. 

Proposition 5.5. For each k > 1, let 

Pk x8k-1 (x-2) + x7k-1 (x -2) + x6k-1 - x5k 1 (X - 3) 

- x4k-1(x - 1)- x3k-1(X + 1) - x2k-1 + xk + 1, 

and let Qk(x) = Q(xk), where Q(x) is the polynomial of degree 13 of equation 
(3.5). Then Pk (x)/(x - 1) is the minimal polynomial of a Pisot number 3k < 2 
with (m, p) = (7k - 1, 14k) and complementary factor Qk(x). 

Remark 5.1. It is not obvious that any of the polynomials Pk in Propositions 5.1- 
5.5 define Pisot numbers. This can be established in all cases by introducing a 
suitable homotopy parameter, a method used in [6] for a different purpose, as we 
illustrate below in the proof of Proposition 5.3. We present a different proof for the 
Pk of Proposition 5.1, which illustrates a different use of a homotopy parameter. 
We can establish that the polynomial Pk of Proposition 5.2 defines a Pisot number, 
using the known structure of the Pisot numbers as explained below, but it seems 
that the other four examples cannot be dealt with by this method. 

Remark 5.2. Proposition 5.1 shows that the trinomials Qk(x) = xk+1 - xk + 1, 
the "simplest" nonreciprocal polynomials, occur as the complementary factors of 
a fairly simple sequence of Pisot numbers 1Bk { 2. We do not have such a simple 
example for a sequence 1Bk T 2, and the evidence of our current studies suggests 
no such example exists. The sequence Pk of Proposition 5.4 does have the simple 
complementary factor x4k + xk - 1, at least for k > 3 and even, but the polynomial 
Pk is much more complicated. 

Remark 5.3. The examples of Proposition 5.2 show there are infinitely many ,B of 
type NC in any interval [2, 2 + 6]. There are only 38 known numbers of type NC in 
[1, 2], the largest degree of such numbers being 36, in spite of a search up to degree 
60. As remarked above, this suggests that there may only be finitely many , of 
type NC in [1, 2], but this has not been settled conclusively. Certainly, no simple 
example such as that of Proposition 5.2 seems possible with /3k T 2. 

Proof of Proposition 5.1. (1) We begin by proving that Pk(x)/(x - 1) is a Pisot 
polynomial. For given k, let t be real and consider the more general polynomial 

P(x, t) = x2k+1 - (x2k+1 - 1)/(x - 1) - txk, 

so that Pk (x)/(x- 1) = P(x, 1). It is well known that P(x, 0) is a Pisot polynomial, 
indeed it is the minimal polynomial of the limit point '02k+1 considered in ?2. The 
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zeros of P(x, t) are continuous functions of t. Clearly, for t > -1, P(x, t) has a 
unique positive root which is monotone increasing with t and hence varies from 
'b2k+1 to /k as t increases from 0 to 1. If P(x, 1) is not a Pisot polynomial, then it 
must have some other roots outside or on the unit circle and hence, following the 
paths of the roots of P(x, t) as t varies from 0 to 1 which start at the 2k roots of 
P(x, 0) inside the unit circle, and end at the roots of P(x, 1), one of these must 
cross the unit circle for some 0 < t < 1. That is, P(x, t) must have a root on the 
unit circle for some t with 0 < t < 1. We will show that this cannot occur by 
showing that P(x, t) has no roots on the unit circle for -2 < t < 2. 

The roots of P(x, t) on the unit circle are also roots of the reciprocal polynomial 

P*(x t) = x2k+lP(1/x t) = 1 - x(x2k+l - 1)/(x - 1) - txk+1. 

The common roots of P(x, t) and P* (x, t) are also roots of xP(x, t) - P* (x, t) = 

x2k+2_- 1, i.e., (2k + 2)nd roots of 1. We test whether these can be roots of P(x, t) 
by substitution. First test x = 1, and find P(1, t) =-2k - t, which can vanish only 
if t = 2k > 2. Otherwise, let w $& 1 satisfy w2k+2 = 1. Then 

P(w, t) = - 
_ (W1 - 1)/(W -1)-twk 

= (2w k1 - t)wk = (?2 - t)Wk 

which can vanish only if t = ?2. Hence P(x, t) has no roots on the unit circle if 
-2 < t < 2 and thus must have the same numbers of roots inside or outside the 
unit circle as does P(x, 0), i.e. 1 outside and 2k inside. In particular, P(x, 1) is a 
Pisot polynomial. 

(2) The remaining part of the proof follows the pattern of [12]. We observe 
from Parry's criterion [21] that the finite sequence 20k+112k is indeed the canonical 
beta-expansion of 1 for some / > 1: because of the leading 2, the word 20k+112k0w 

clearly dominates all of its left shifts. This Q has characteristic polynomial 

Rk = X3k+2 - 2X3k+1 _ (X2k _ 1)/(X - 1). 

Now we simply check that 

PkQ = 2k+1 
_(X -2)-Xk+1 + xk + ?}{xk(x_1) + 1} 

(5 .1 ) ~= X 3k+ 1 (X -2)(x - 1 _-X2k + 1 = (X - I)Rk - 

The left member of (5.1) has a unique root !k > 1 while the right member has 
/ > 1 as a root. Thus / = /3k, SO the beta expansion for /k must be as claimed, 
and the complementary factor is Qk- ? 

Proof of Proposition 5.2. (1) Again we first show that Pk(x)/(x-1) or Pk(x)/(x2-1) 

is a Pisot polynomial according to whether k is even or odd. A proof very similar to 
that in Proposition 5.1 is possible, and we leave this to the reader. Instead, we give 
a proof based on known facts from the theory of the Pisot numbers. First observe 
that we may write 

(5.2) Pk = xk(xk+l - 2Xk - 1) + (xk-I + 1). 
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For lxl = 1, since x= 1/x, we may verify the following polynomial identity (cf. 
[3, p. 142]): 

(5.3) ixk?l - 2xk - 112 = I(xk + 1)(x - 1)12 + Ixk-1 + 112. 

The polynomial xk+1 - 2Xk 1 xk(x - 2) - 1 is easily seen to be a Pisot poly- 
nomial by Rouche's theorem, since Ix - 21 > 1 for lxl = 1. By (5.3), this polyno- 
mial dominates xk-i + 1 on the unit circle, with equality only at the roots of 
(xk + 1) (x - 1). Thus, again by Rouche's theorem applied to the numerator of the 
right member of (5.2), Pk(x) is a Pisot polynomial multiplied possibly by a factor 
of (xk + 1)(x - 1). This factor is easily seen to be x - 1 if k is even and x2 - 1 if k 
is odd. 

(2) As in the proof of Proposition 5.1, it is clear that 20k: Olk-1Olk-20110k-21 is 
the expansion of 1 for some 03> 1. A little calculation shows that the characteristic 
polynomial Rk (x) for this expansion is given by 

( I)R(x) x4k+1 (x-1) (x-2)-X3k + X2kX _x1) + 2x _x1) + x -x +1 

It now suffices to verify that Pk(x)Qk(x) = (x - l)Rk(x), an elementary exercise 
(which is made even easier by Maple). 

(3) Clearly, Qk(x) = x2k+2 x2k+1+xk+l -x+1 is reciprocal, as is (x+11)Qk(x). 
To show that it is noncyclotomic for sufficiently large k, we compute its Mahler 
measure 

M(Qk) f JImax(V-yl, 1) = exp( log IQk(e(t))Idt) 

where ay runs over the zeros of Qk, and where e(t) = exp(27rit). So M(Qk) = 1 if 
and only if Qk is cyclotomic. By a result of [9], generalized in [20], if F(x, y) is a 
Laurent polynomial in two variables, then 

lim M(F(x, xk)) = M(F(x, y)), 
k-*oo 

where M(F(x,y)) is the geometric mean over the 2-torus of IF(x,y)J, i.e., 

I I 

log M(F(x, y))= j j log IF(e(s), e(t))ldsdt. 

Thus, 
lim M(Qk) = M(y2 Y2X-l +y-x +_ 1). 

k-oo 

By the change of variables -x/y -* x, we see that 

M(y2 _x-1y2 +-y-x+1) =M(x+y+1+1/y+1/x) = 1.28573 ... 

one of the limit points of Mahler measures mentioned in [9]. Since liM M(Qk) > 1, 
Qk can be cyclotomic only for finitely many k. (Computation suggests that Qk iS 
cyclotomic only for k = 1, 2 and 3. An estimate similar to that given in [9, Appendix 
2] should suffice to establish this, since it is easy to verify by computation that it 
is true for k < 100.) D 
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Sketch of Proofs of Propositions 5.3-5.5. We will not present the full proofs of these 
results here. In broad outline, the proofs follow those of Propositions 5.1 and 5.2. 
One determines the beta-expansion by inspection and then proves that it is correct 
using Parry's criterion and elementary polynomial algebra (assisted in all cases by 
Maple). The restrictions k > 4 and k > 3 in Propositions 5.3 and 5.4 arise at this 
point in the proof. 

The main difficulty is the proof that Pk (x) has exactly one root outside the unit 
circle. Our method of proof is suggested by similar considerations in [6]. 

For Proposition 5.3, we begin with the observation that if Pk*(x) = x5k+2Pk(i/x) 

is the reciprocal of Pk, then Pk + Pk = -x5k+l - x, whose roots are 0 and the 5kth 
roots of -1. Let xj (t), 1 < j < 5k + 2, be the roots of f (x, t) := Pk (x) + tPk (x) = 0, 
where, say xi(1),. . . ,X5k(1) are the roots of x5k + 1, X5k+1(1) = 0 and x5k+2 = 00. 

By the symmetry of f(x, t) under x -l 1/x, no xj (t) lies on the unit circle for 
0 < t < 1 unless it is a common root of Pk and Pk* (these roots account for the 
factor Tk(x)). This symmetry also shows that the curves xj(t) are orthogonal to 
the unit circle at t = 1 (cf. [6,?3]). 

The roots of Pk (X) = 0 are xj (0), j = 1, . . ., 5k + 2. Clearly, IX5k+I (0)I < 1 and 
X5k+2(0) > 1, so to show that Pk(x)/Tk(x) is a Pisot polynomial, it suffices to show 
that the tangent to the curve xj (t) at t = 1 points out of the unit circle, i.e., that 
dx (1)/xj(1) > 0 for j = 1, ... , 5k. This reduces to showing that w-1Pk(W) > 0 for 
each root w of x5k + 1 that is not a root of Tk(x). This follows by simple estimates, 
once one distinguishes the five possible values of wk. 

Similar proofs apply to the Pk(x) of Propositions 5.4 and 5.5. For example, for 
Proposition 5.4, Pk(x) - Pk*(x) = -x(x8k - 1)/(X2k + 1), which has roots on the 
unit circle at some of the 8kth roots of 1. 

Remark 5.4. In addition to the families described in Propositions 5.3 - 5.5, we have 
found a number of other examples of the same type with 13k < 2 for which the 
quantities m and p depend linearly on k and for which Qk is nonreciprocal. An 
apparently similar example with a very different behavior is the following: 

Pk (X) = x6k+1(X -2) + x5k+1 (x -1) + x4k (x -1) 

- x3k(x2 - 2x + 1) - x2k+1(x - 1) - xk(x - 1) - (x-1). 

The values of k, m, p and the type of Qk for 1 < k < 20 are given in Table 2. 
Note that we did not compute the polynomials Qk for 18 < k < 20 but verified 
that they were noncyclotomic by computing a single root outside the unit circle 
directly from the beta-expansions. Although the period lengths for k = 5,6,7,8,9 
and 14 are given by p = 6k, the periods (i.e. the words cm+l ... cm+p) themselves 
do not follow a common pattern. We can prove that Pk defines a Pisot number for 
each k > 1 by the method of Propositions 5.3-5.5. However, we do not know how 
to prove that the unusual behavior of the beta-expansions indicated in Table 2 for 
k < 20 will persist for larger k. 

Remark 5.5. In all of these examples 3k satisfies a polynomial of the form f(x, xk), 
where f (x, y) is a polynomial in two variables. The proofs that f (x, xk) has exactly 
one root outside the unit circle seem somewhat ad hoc. The general question to 
which one is led is to find the exact conditions on a polynomial f (x, y) E C [x, y] 
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TABLE 2 (see Remark 5.4) 

k m p type 
1 2 6 C 
2 7 45 C 
3 10 48 C 
4 55 49 NR 
5 237 30 NR 
6 395 36 NR 
7 861 42 NR 
8 2117 48 NR 
9 856 54 NR 
10 2314 566 NR 
11 2190 113 NR 
12 1530 578 NR 
13 1979 625 NR 
14 4086 84 NR 
15 3080 796 NR 
16 2755 930 NR 
17 2633 3428 NR 
18 2427 55648 not C 
19 3030 219156 not C 
20 5229 337160 not C 

under which f (x, xk) has a single root outside the unit circle for all sufficiently large 
k. We hope to return to a discussion of this interesting question in a future paper. 
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